
DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

Thread Migration and Communication Minimization in DSM Sjstems 
Kritchalach Thitikamol and Pete Keleher 

University of Maryland 
(kritcha I / keleher) @cs.umd. edu 

Key words: DSM, load-balancing, thread migration. 

Abstract 
Networks of workstations are characterized by dynamic resource 
capacities. Such environments can only be efficiently exploited by 
applications that are dynamically re-configurable. This paper 
explores mechanisms and policies that enable online reconfig u- 
ration of shared-memory applications through thread migration. 

We describe the design and preliminary performance of a DSM 
system that performs online re-mappings of threads to nodes 
based on sharing behavior. Our system obtains complete sharing 
information through a novel correlation-tracking phase that 
avoids the thread thrashing that characterizes previous ap- 
proaches. This information is used to evaluate the communica- 
tion required by a given thread mapping, and to predict the r e- 
sulting performance. 

1. Introduction 
Meta-computer environments can be characterized by distritai- 
tion, heterogeneity, and changing resource capacities. Meta- 
computers consist of networks of machines, some of which might 
be shared memory multiprocessors. Distributed and parallel f>- 
plications can be run in such environments, but usually not as 
effectively as on shared memory multiprocessors. Part of the ra- 
son is that meta-computers are often non-dedicated, forcing the 
individual threads of a parallel application to compete with other 
jobs for resources. Another part of the problem is the individual 
machines often have different capabilities. Finally, such envira> 
ments are highly dynamic. 

Parallel applications must be dynamically reconfigurable in 
order to run efficiently in such environments. Reconfigurability 
can be explicit in the application^ structure. However, this ap- 
proach is unlikely to be portable, and puts a large burden on ap- 
plication developers. A more general approach is for the runtime 
system to implement reconfiguration transparently to the applia- 
tion. This paper describes such a reconfiguration mechanism in 
the D-CVM {Dynamic Coherent Virtual Machine) [1] distributed 
shared memory (DSM) system. 

D-CVM implements reconfiguration through thread miga- 
tion. Thread and process migration has long been used as a load- 
balancing mechanism [2, 3] in parallel and distributed systems. 
However, DSMs usually have much higher communication e- 
quirements than message-passing systems, implying that good 
thread migration policies in this domain must also account for 
communication behavior. 

Consider a page-based software DSM. If threads on distinct 
nodes of a system share data on a specific page x, sharing traffic 
can only be eliminated by co-locating both threads on the same 
node. Rather than just moving pages to threads that request them 
via network faults, thread migration allows the computation to be 
moved to the data instead. 

Creating a good mapping of threads to nodes requires several 
distinct steps. First, we must be able to evaluate the load distri- 
bution of a given mapping. This generally requires a way of eat- 
mating threads' computational needs and nodes' computational 
capacities. This distribution must take into account bottiparal- 
lelism, or how many nodes we are exploiting, and the balance, or 
how uniformly the load is distributed across those nodes. Second, 
we must be able to evaluate a mapping^ communication cost. 
This problem reduces to identifying the sharing between threads 
that are located on distinct nodes. Finally, there must be a way to 
combine these metrics into a single algorithm. 

In general, neither parallelism maximization nor commuh- 
cation minimization can proceed in isolation. Assume that work is 
distributed equally across four threads,/;; and p3 on one node and 
P2 and p4 on another. This distribution is clearly 'balanced" in the 
sense that each node has the same amount of work. However, the 
communication is just as clearly not optimal if each thread c<m- 
municates with the neighbors implied by the thread ids (i.e.pz 
communicates withp; and p3). A better mapping of threads to 
nodes would be pi and p2 on the first node, and p3 and p4 on the 
second. By re-mapping threads to nodes we reduce communica- 
tion by a factor of three without affecting the load balance. 

We illustrate these issues by describing D-CVMfc thread- 
mapping mechanism. D-CVM applications consist of a single 
process and one or more user-level threads on each node of the 
system. Each thread has a stack and other D-CVM context. All 
threads share global data uniformly. 

We do not require threads to have uniform amounts of work. 
We also do not assume a dedicated environment. In fact, we ex- 
pect reconfigurable systems like D-CVM to be most useful in the 
meta-computer environments discussed above. While our ap- 
proach aggressively exploits the underlying DSM's mechanisms 
in order to track threads'sharing behavior, our techniques are not 
specific to D-CVM's consistency protocols. Moreover, the heu- 
ristics that we use to map threads to nodes are relevant to the 
load-balancing of message-passing applications as well. 

Much of this paper describes the specific mechanisms used 
in D-CVM, but the ultimate goal is to explore the design space of 
thread migration policies. To this end, we discuss alternatives and 
tradeoffs at each relevant portion of the paper. The application 
domain assumed in this paper is that of highly iterative scientific 
code running on top of software DSMs. 

Section 2 describes the hardware and software environment 
used in our experiments. Section 3 describes the D-CVM mecha- 
nisms used to migrate threads across machine boundaries. Section 
4 describes D-CVM^ approach to maximizing parallelism and 
minimizing load imbalance. Section5 describes D-CVM's use of 
active correlation-tracking to obtain sharing information, and the 
design and preliminary performance of several different thread- 
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mapping heuristics. Finally, Section6 describes related work and 
Section 7 concludes. 

2. Experimental Environment 
The DSM target used in this work is a version of D-CVM [4], 
modified to handle migratory threads. D-CVM is a page-based, 
user-level DSM that implements multiple-writer lazy release 
consistency (LRC) [5], which is a derivation of release consis- 
tency [6]. In release consistency, a processor delays making mod- 
fications to shared data visible to other processors until special 
acquire or release synchronization accesses occur. The propaga- 
tion of modifications can thus be postponed until the next syn- 
chronization operation takes effect. LRC allows the propagation 
of modifications to be further postponed until the time of the next 
acquire. Programs produce the same results with these memory 
models as with more conventional memory models, provided that 
all synchronization operations use system-supplied primitives, 
and that all conflicting shared accesses are ordered by synchrori- 
zation or program order. In practice, most shared-memory pro- 
grams require little or no modifications to meet these requiE- 
ments. From the perspective of the mechanisms discussed in the 
rest of this paper, the most important attribute of D-CVM is that 
its protocols tolerate false sharing [7] well. 

The majority of our experiments were run on an eight- 
processor SP-2. Each node is a 66.7 MHz POWER2 processor 
with 64K first-level caches and 128 MBytes of memory per node. 
The processors are connected by a 40 MByte/sec switch. The 
operating system is AIX 4.1.4. D-CVM runs on UDP/IP over the 
switch. Lock acquires are implemented by sending a request ma- 
sage to the lock manager, which then forwards the request on to 
the last requester of the same lock. This may take only two mes- 
sages if the manager is also the last owner of the lock. Smple 2- 
hop lock acquires take 779 usecs, while 3-hop lock acquires take 
1185 usecs. Simple page faults across the network require 1576 
usecs. Page fault times are highly dependent on the cost of 
mprotect calls, 15 usecs, and the cost of handling segmentation 
violation (segv) signals at the user level, 120 usecs. Minimal 8- 
processor barriers cost a minimum of 1176 usecs. 

The applications used in our study are SOR, a simple near- 
est-neighbor stencil with a 1024x1024 point grid, FFT, an m- 
plementation of a 3-D Fast Fourier Transform solver with 
64x64x64 points, and barnes, ocean, and Water-Nsquared (wa- 
ter) from the SPLASH-2 benchmark suite. Barnes was modified 
by Rajamony [8] to decrease synchronization granularity and 
solves equations for 16k bodies. Ocean was run with 256x256 
molecules and water with 512. In all cases, our system consists of 
32 threads distributed across eight nodes. Since our environment 
is homogenous and all threads perform equal amounts of work, 
we place four threads on each node. 

2.1 Thread Representation 
D-CVMfc thread mechanism is based on the NewThreads [9] 
user-level thread library. One of the primary distinctions among 
thread packages is whether they support kernels- or user-level 
threads [10]. Kernel-level threads are scheduled and otherwise 
managed by the kernel directly. One advantage of this arrange- 
ment is that the kernel can switch to other threads when the ac- 
tive thread makes a blocking system call. The kernel can also 

integrate the scheduling of threads into the overall scheduling of 
processes on the machine. Each kernel-level thread can poten- 
tially compete with threads of other processes, while all user- 
level threads of a single process must compete for resources as a 
single unit. 

The disadvantages of kernel-level threads include poorer 
performance and a lack of flexibility. User-level threads are UH- 

ally faster because thread operations do not require kernel calls. 
They are more flexible because the only limitations are usually 
those imposed by the hardware. D-CVM is ideally suited for user- 
level threads because it does not use blocking I/O calls. 

3. Thread migration mechanisms 
This section discusses D-CVM's thread migration mechanism, 
together with the implications of alternative design choices. 
Transparent migration of threads across node boundaries requires 
that the destination environment be 'equivalent" in some sense to 
the source environment. This equivalence has two parts: thenode 
environment, and the data view. 

3.1 Node Environment 
A thread's node environment includes all aspects of the applica- 
tion^ runtime environment that are related to the particular node 
on which the thread is running. These aspects include enviroi- 
mental variables, and resources allocated or read from the oper- 
ating system. These problems have been studied at length ele- 
where [3,11]. Moreover, these problems are not specific to thread 
migration systems, but apply to any distributed environment, 
including PVM, MPI, and any DSM. To the authors'knowledge, 
no DSM system explicitly addresses this issue in any general 
way. We therefore follow the standard practice of requiring all 
system calls to occur during the initialization phase. Since miga- 
tion is disabled during initialization, all system calls occur before 
any threads are re-located. None of our applications needed to be 
modified in order to obey this restriction. 

3.2 Data View 
Data seen by a thread includes values in registers, the stack, non- 
shared global data, and the shared data segment(s). Registers are 
easily copied from one machine to another. We do not have to 
worry about volatile variables or compiler optimizations since 
migration only occurs when threads voluntarily yield the proca- 
sor through a procedure call [12]. 

Non-shared global data 
Non-shared global data refers to heap data and to statically alb- 
cated data. D-CVM only ensures consistency of data explicitly 
allocated through D-CVM calls. Hence, heap and statically alfc- 
cated data is not consistent across nodes. The result is that 
threads on a single node see the same copies of non-shared data, 
whereas threads on different nodes see distinct versions. There 
are two general approaches to this problem. The first is to ensure 
consistency of this data by explicitly handing it off to the DSM 
system. The second is to disallow any non-shared data that is 
processor-dependent. We chose the second approach because the 
first requires extensive (and non-portable) link-time manipulation 
in order to segregate the applications global data from the library 
and DSM data. 
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Table 1: Migration Costs («sees) 

Stacks 
Stacks can easily be copied from one machine to another. The 
major complication is dealing with pointer values located in the 
stack. Self-referential pointers become inconsistent if thread ni- 
gration causes a stacks address to change. There are essentially 
three approaches to dealing with this problem. First, compiler or 
language support could maintain enough type information for 
pointers to be reliably identified. Such an approach is inherently 
specific to a single language or runtime system. 

Second, systems using the '^can" approach attempt to dy- 
namically identify pointers in the stack by scanning the stack for 
possible pointer values [13]. The probability that any data value 
is misidentified as a pointer is low, but non-zero. Any such ms- 
identifications could contaminate ongoing computations without 
obvious symptoms, causing erroneous results to be accepted as 
correct. 

Finally, the 'Veserve" approach requires systems to reserve 
unique virtual addresses for the stack of each thread in the S)S- 
tem. With a unique stack address, a thread can migrate to any 
node without needing to change the stacks address. This causes 
consumption of the address space to scale with the number of 
threads in the entire system. With 32k stacks, 128 threads/node, 
and a 16-node system, this approach uses only 64 megabytes of 
the address space. While large, this is certainly usable on current 
systems. The advent of 64-bit addresses makes possible a prob- 
abilistic approach that consists of allocating the stack at a random 
64-bit address. With good random number generators, the possi- 
bility of two threads being allocated to the same address is ex- 
ceedingly remote. Any collisions that do occur can easily be d- 
tected and dealt with by prohibiting that particular configuHtion. 

Table 1 shows the cost of a single thread migration on D- 
CVM for the "scan" and Reserve" (labeled V and r', respe    c- 
tively) migration mechanisms. We present results for three diffe- 
ent architectures: the 66.7 MHz Power2 processors over the SP- 
2fc 40-MByte switch, 275-MHz 21164 Alpha processors over a 
155 Mbit ATM, and UltraSparcs over a 10MBit Ethernet. UDP 
was used in all cases. The table gives the size of the migrated 
thread^ stack, and the runtime cost seen by the source and dest i- 
nation nodes. "Send" shows the cost of creating and sending the 
migration message. "Reply" shows the cost of reading the request 
and sending the reply message. Note that these communication 
costs are relatively large, reflecting our use of kernel-based IP 
primitives. These costs can be amortized by including more than a 
single thread in a message. Communication costs could be E- 

duced by more than an order of magnitude through use of zero- 
copy protocols such as BIP [14] running on top of a Myrinet [15]. 
"Scan" is the cost of scanning the stack for pointer values, up- 
dating any pointers found, and copying the stack into its new 
location. This cost can be considerable, but is still insignificant 
compared to communication overheads. For the "reserve" ap- 

Figure 1: Migration and Consistency 

proach, the "scan" column just refers to the cost of copying the 
stack out of the migration message.  Both columns labeled 
"Other" consist of local bookkeeping, such as manipulating local 
thread queues to reflect incoming or outgoing threads. 

In all cases, the cost of thread migration compares favorably 
with the cost of fetching a remote page. While the stack sizes are 
small, we believe them to be typical of scientific codes. Larger 
stacks could be handled efficiently by demand fetching all but the 
top pages. The migrations were timed in Water-Nsquared. 

Shared data 
Finally, each node has a specific perspective on the consistency of 
shared state, shared by all local threads. Migration of a thread 
from one node to another requires that the view of the destination 
be as advanced as that of the source, just as with synchronization. 
This usually only has to be addressed explicitly by systems that 
implement relaxed consistency models. As discussed in Section!, 
such memory models often delay the performance of specific 
shared accesses in order to reduce overall communication E- 

quirement. Figure 1 illustrates the problem. Assume that each of 
processes Pi and P2 contain at least one thread. Thread t\ of proc- 
ess Pi migrates to P2. Before migrating, however, ti modifies 
shared data variable x. If the migration completes before the con- 
sistency information arrives, a subsequent read by the same 
thread at its new location could return an old value. In an LRC 
protocol like D-CVM's, notice of the modification would not 
arrive until the subsequent barrier. Hence, the read could return a 
stale value. 

The inconsistency can be addressed by appending consi- 
tency information to the messages that migrate the thread. Alter- 
natively, a thread^ source processor can release to the thread^ 
destination processor before the thread is activated on the new 
processor. Our system takes the latter approach, moving threads 
only at predefined synchronization points. 

4. Parallelism and load balance 
Our overall goals are to maximize parallelism, to minimize load 
imbalance, and to minimize communication. The combination of 
these goals is a form of the multi-way cut problem, and is NP- 
hard. While good approximation schemes have been found for the 
general form of the communication minimization problem[16], 
our problem is complicated by the fact that we must also address 
load balancing and parallelism. We therefore decompose our 
problem into three distinct tasks: 

(1) determining the number of nodes that will result in the 
greatest speedup, 

(2) minimizing load imbalance by adjusting the number of 
threads per node, and 

(3) minimizing communication by taking sharing into account 
when mapping threads to nodes. 

Ideally, of course, these tasks should be performed at the same 
time because they are all interrelated. Since the amount of can- 
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munication can affect an application^ efficiency, the mapping of 
threads to nodes could affect the number of nodes at which the 
best performance is achieved. However, addressing all of these 
issues simultaneously can make the complexity of the required 
algorithms unmanageable. 

4.1 Number of nodes 
We determine the number of nodes on which to run a parallel 
application with the help of an initial guess provided by the user 
at startup time. As the application continues to execute, the sys- 
tem tracks processor efficiencies by measuring the proportion of 
time spent waiting on communication and synchronization. These 
efficiencies are compared to system-wide high-water and low- 
water thresholds. If the efficiency is below the low-water thresh- 
old, we assume the application would be better off running on 
fewer processors. The converse is true for the high-water mark. 

Consider the 
speedup curve shown in 
Figure 2. The diagonal 
line represents linear 
speedup, so the degree to 
which the speedup curve 
diverges from the line 
represents the ineffi- 
ciency with which the 
application is being exe- 
cuted. At point A, the 
efficiency is high, so we 
can reliably assume that increasing the number of processors will 
improve overall speedup. At point B, however, the efficiency is 
very low, and we can assume that decreasing the number of proc- 
essors will either increase the speedup, or not hurt it significantly. 
In either case, we can check the result of changing the number of 
processors by comparing efficiencies before and after the change. 

Our thresholds were chosen to maximize a single applica- 
tions speedup, but they may also be chosen to improve overall 
system throughput. Maximizing speedup at all costs might not be 
the best choice if the slope of the curve in Figure 2 is a very low 
positive number. Currently, our system uses 80% for the upper 
efficiency threshold and 20% for the lower. 

This simple heuristic will perform poorly if an application^ 
speedup curve has local minima. For instance, some applications 
perform poorly unless the number of threads is a power of two. 
The most general approach to this problem is to provide an API 
that allows the system to be informed of application-specific 
scheduling information [17]. 

4.2 Thread capacity 
A truly general load-balancing facility must be able to accommo- 
date both heterogeneous node capacities and threads that perform 
varying amounts of work. The capacity of a node depends on both 
the intrinsic capability of the node, as well as the proportion of 
this capacity being consumed by other jobs. The residual capacity 
of a node is a dynamic measure that can evolve during the course 
of an application^ execution. Thread resource requirements 
might also vary. 

Systems should ideally be able to estimate both node capaci- 
ties and thread resource requirements at runtime. Unfortunately, 

obtaining both at the same time is truly a hard problem. A rough 
estimate of residual capacities can be made if relative thread 
requirements are known. Conversely, knowledge of residual ca- 
pacities and fine-grained tracking of CPU usage can be used to 
estimate the resource requirements of each thread. Furthermore, 
the problem is greatly simplified in dedicated environments that 
have homogeneous nodes, or with applications whose threads 
perform equal amounts of work. We distribute threads uniformly 
in our experiments because both simplifications apply for our 
environment and applications. 

However, we can develop a more general formulation by let- 
ting wt represent the work to be done by thread i, and .fy represent 
the residual capacity of node / We deliberately leave the units of 
w, and Rj unspecified, as only their relative magnitudes matter. 

W, 

5X 
1>; (1) 

Assuming that there are N nodes and T threads, then the amount 
of work Wt that should be assigned to node i is: 
Note that Wt is some abstraction of work, not necessarily the 
number of threads. Also, this formulation ignores the influence of 
communication on the cost of performing each chunk of work. 
This information is not available if we have not yet mapped 
threads to nodes. The impact of this general formulation on thread 
mapping is discussed in Section 5.4. 

5. Thread correlation and mapping heuristics 
The final task identified in Section 4 is to map specific threads to 
nodes. This decision would ideally be made with global informa- 
tion. However, dependence on global state introduces the issue of 
timeliness into the system, as well as new sources of overhead. 
More importantly, not all decision processes deal well with in- 
complete or stale information. 

Nonetheless, we use global information for three reasons. 
First, the amount of state needed to summarize sharing behavior 
for our heuristics is only i*n2, where ;' is the size of a short integer 
and n is the number of threads. This quantity of information can 
easily be carried in a single message for realistic numbers of 
threads. Second, sharing information can be piggybacked on top 
of existing global synchronization operations, e.g. barriers. The 
only new messages are those that migrate threads between nodes. 
Finally, thread mapping can be used to adapt to dynamically 
changing environments. However, the variation that we wish to 
take advantage of will be at least on the scale of tens of seconds, 
not milliseconds. The cost of a single decision can therefore be 
amortized across a relatively large amount of computation. 

5.1 Cost evaluations 
Our goal in mapping threads to nodes is to minimize communic a- 
tion. Communication occurs in D-CVM for two reasons: synchro- 
nization and data fetches. Modulo application non-determinism, 
communication is minimized by moving communicating threads 
to the same (or nearby) nodes. Since our system has a uniform 
remote access cost, communication between a pair of threads can 
only be reduced or eliminated by co-locating them. Co-locating all 
threads on the same node would eliminate all communication, but 
presumably not produce the best overall performance. 
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■ Changing the mapping of threads to nodes can have una n- 
ticipated effects on performance, such as the influence of co- 
location on the actions performed by the underlying DSM. How- 
ever, these secondary effects are likely to scale with communica- 
tion costs, so we can treat them as one in our system. 

A comprehensive cost function that summarizes the desir- 
ability of a given mapping of threads to nodes must take parallel- 
ism, load balance, and communication requirements into account. 
However, we assume both parallelism and load balance have 
been addressed through the steps outlined in Section 4. Hence, 
the only remaining characteristic to be summarized is communi- 
cation cost. 

Communication cost can be measured in a number of ways. 
Seemingly obvious metrics include messages counts, and the total 
amount of communicated data. The problem with these metrics is 
that they only reflect sharing between nodes, not between the 
individual threads on each node. For example, a large amount of 
communication between nodes m and «, is not sufficient to deter- 
mine which threads on those nodes are sharing resources. 

We therefore use information from the underlying DSM 
protocols to generate metrics that measure sharing between indi- 
vidual threads. Data sharing between threads can be tracked by 
correlating accesses to shared memory by the threads. Two 
threads that frequently access the same shared pages can be pre- 
sumed to share data. We define a density function as the access 
rate of thread i to page p. The correlation of two threads over 
page p can be computed as the product of the density function of 
the two threads for page p. The overall correlation of the two 
threads, then, is the sum of the correlations for each page in the 
system [18]. Unfortunately, page-based DSMs have no efficient 
way of deriving density functions because they can not track indi- 
vidual accesses. Instead, accesses are tracked only at the granu- 
larity of a page. Systems that capture shared writes through bi- 
nary rewriting [19] rather than page faults could presumably 
capture accurate densities. However, this would add overhead to 
all writes unless function cloning is used. 

More generally, the notion of an access rate is difficult to 
capture. Once a page has been mapped locally, subsequent ac- 
cesses to the page proceed transparently. Hence, we can not track 
the rate of individual accesses. A rough estimate could be ob- 
tained by tracking the average length of time a given page re- 

mains invalidated before being revalidated. Unfortunately, this 
estimate could be greatly affected by intervening events. For in- 
stance, 100 «sees is a long interval if it contains only local ac- 
cesses. However, a remote access can take milliseconds. Such 
events make it unlikely that the rate of page «validation would 
accurately reflect the access rate. 

We therefore use the number of pages shared across node 
boundaries as a predictor of the amount of communication that a 
mapping of threads to nodes will produce. We define the correla- 
tion of a pair of threads as the total number of pages shared be- 
tween the threads. We define the cut cost of a given mapping of 
threads to nodes as the sum total of all thread-pair correlations for 
which the component threads are on distinct nodes. Note that this 
definition could be extended to deal with non-uniform communi- 
cation networks by multiplying thread correlations by link- 
specific coefficients. 

5.2 Intra- versus inter-node information 
The obvious way to determine the amount of sharing between 
threads is to track DSM page faults. Tracking page faults can give 
a rough estimate of system sharing. However, this passive track- 
ing approach only identifies sharing between threads of different 
processors. Since all local threads share the same access rights to 
each page, multiple local threads can access a page without 
causing more than a single page fault. No information is gained 
about sharing between threads located on the same node. Hence, 
decisions must be made with only partial information, often 
leading to bad long-term choices. These bad choices are discov- 
ered only after the threads have migrated to other processors. 
Once a thread migrates from a host, the interactions between that 
thread and those left behind become visible in the form of net- 
work page faults. These faults can be used to identify threads that 
should be moved back to their original position, resulting in the 
ping-ponging of threads (or thread thrashing) across the system. 

Figure 3 shows the percentage of complete sharing informa- 
tion gathered by the passive tracking approach as a function of the 
number of migration rounds. Even at the end of the migrations, 
the passive tracking only comes close to obtaining complete in- 
formation for SOR, by far the least complex of our applications. 
Each round consists of gathering page fault information for an 
iteration of the application, followed by migrating threads to new 
locations. 

The applications averaged slight more than six rounds of mi- 
grations before stabilizing, although Figure 3 shows all rounds in 
which new information is gained. The term Stabilizing" is used 
advisedly. Recall that passive correlation tracking only learns 
about the first local thread to access a page during any synchroni- 
zation interval. This means that the speed at which information is 
accumulated is non-deterministic. A configuration might appear 
optimal for several iterations before the non-deterministic sched- 
uling of threads reveals new information. This happened for wa- 
ter, where migrations occurred eight times, followed by two it- 
erations in which no better configuration was found, followed by 
one last iteration in which new information caused a final round 
of migrations to occur. 



5.2.1 Active correlation tracking 
Thread-thrashing can be avoided if we have information about 
correlations between local threads before the re-mapping takes 
place. D-CVM obtains this information through an active corre- 
lation-tracking phase, which provides complete correlation in- 
formation for all thread pairs, local and remote. The algorithm 
uses two data structures: per-page correlation bits, and per-thread 
access bitmaps: 

1) At the start of the tracking phase, all pages are read- 
protected and the correlation bit of each page is set. The 
pages'previous states are saved in the page structure. The 
thread scheduler is placed in a special mode that prevents 
thread-switching from occurring until the next barrier has 
been reached. 

2) At each access fault for a page whose correlation bit is set 
(a correlation fault), the corresponding bit in the per-thread 
access bitmap is set, and the correlation bit is reset. The 
page is then returned to its original state and the fault ha n- 
dler returns. If the access type would have caused a viola- 
tion outside the correlation-tracking phase, a second fault 
occurs and is handled normally. 

3) At the next barrier, the system switches to the next thread, 
sets all correlation bits again, and once again read-protects 
all pages. This thread is then allowed to proceed in the 
same manner as the previous thread. 

4) The tracking phase ends when all threads reach the next 
barrier. At the end of the correlation-tracking phase, all co r- 
relation bits are reset and untouched pages are returned to 
their correct states. 

After the tracking phase has ended, the per-thread access bitmaps 
specify exactly which pages each thread accessed during the 
tracking phase. 

Note that we do not distinguish between read and write ac- 
cesses. The reason is that co-locating two consumers of the same 
data gives us the same benefit as co-locating a producer-consumer 
pair. Page faults are avoided in both cases. The sole exception is 
that we filter out pages that are written only during initialization 
because read-only pages do not cause page traffic. 

The tracking phase has two primary forms of overhead. The 
most obvious is the cost of the correlation faults. This cost scales 
with the number of pages accessed locally, and the degree of 
sharing between the local threads. Given a system with n nodes 
and p pages, the local threads will usually access at least p/n 
pages, more if there is a large amount of data sharing between 
threads. Local sharing increases the number of faults because 
each shared page incurs more than one page fault. However, the 
cost of correlation faults on distinct nodes is incurred in parallel. 

The second cost results from disabling the thread scheduler 
during the tracking phase. Turning off the thread scheduler elim i- 
nates the latency toleration advantages of per-node multi- 
threading. The performance impact of losing this amount of 1 a- 
tency toleration is usually on the order of 10-15% [20], and is 
only incurred during the active correlation-tracking phase. 

We could implement active correlation-tracking without 
turning off the thread scheduler. However, pages would need to 
have a correlation bit for each local thread. Furthermore, each 
thread switch would require the state of all pages to be updated to 
correspond to the new threads correlation bits. The impact of 

Slowdown While Tracking 
rs6000    Alpha   Pentium II 

ADC     UNIX      Linux 

Correlation Faults 
/ remote       / shared 

miss            page 

barnes 2% 3% 1% 0.12 6.93 
FFT 6% 10% 2% 0.10 1.51 

ocean 11% 18% 4% 0.25 9.52 

SOR 22% 36% 8% 4.46 1.34 
water 1% 2% 0% 0.08 6.55 

Table 2: Correlation Tracking Overhead 

these changes would likely overwhelm the advantages of using 
the thread scheduler. 

Table 2 shows the runtime overhead of active correlation 
tracking for three local platforms. This overhead is calculated 
from the number of correlation faults and the cost of handling 
correlation faults on each platform. The platforms shown here are 
an SP-2 running AIX 4.2, a cluster of 266 MHz Alpha multipro c- 
essors running Digital Unix 4.0, and a cluster of 266 MHz 
Pentium IPs running Linux 2.0.32. The worst overheads are on 
the Alpha platform, but even here the maximum overhead only 
reaches 36%. The maximum overhead on Linux is only 8%, 
showing the value of fast user-level signal-handlers. 

The last two columns of Table 2 show the number of corre- 
lation faults as a function of the number of remote misses in the 
default case, and of the number of shared pages. "Correlation 
faults per shared page" gives an indication of why SOR is such a 
pathological case for the correlation-tracking mechanism. SOR is 
a nearest-neighbor application, and therefore only exchanges 
shared updates for border rows. However, the correlation-tracking 
mechanism incurs faults on all pages, even the interior pages that 
are not shared. 

The last column shows the number of correlation faults as a 
function of the number of shared pages. This number gives a 
rough estimate of the number of threads sharing each page. A 1' 
would indicate no sharing, larger numbers indicate the degree of 
sharing between threads. For example, Ocean has a total of 3200 
pages. If the data on these pages were distributed evenly across 
32 threads, each would be responsible for 100 pages. However, 
Table 2 indicates that each thread touches 952 pages during each 
iteration. Nonetheless, Oceans overhead is only 18% for the 
Alphas, and 4% for the Pentium II machines. 

Nonetheless, the tracking process is too costly to perform 
often. However, correlation tracking only has to be repeated in 
response to changes in the environment or the application. The 
cost can therefore be amortized over the rest of the computation. 
For example, even SORs overhead on the Alpha platform might 
be tolerable if amortized across ten iterations, and would certainly 
be tolerable if each application performed 100 such iterations. 

As noted above, all overhead of the tracking phase is in- 
curred locally, and in parallel across nodes of the system. This 
implies that the absolute runtime cost of the tracking phase 
should not increase as the number of nodes is increased. This is 
in contrast to the passive ping-ponging approach (see Section 
5.2), in which increasing system size would probably increase the 
number of thread migrations. Additionally, the system might also 
take longer to settle. 

The absolute cost of this tracking phase is sensitive to the 
overall amount of sharing in the system. Since sharing means that 
multiple threads are accessing the same pages, such sharing i n- 
creases the total number of segmentation violations. Systems with 
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Figure 4: 32-thread FFT, 26 x 26 x 26 - (a) on four nodes, 
squares indicate thread sharing that does not cause network 
communication, (b) on eight nodes, as above, (c) randomized 
thread assignments for four nodes 

little or no sharing are therefore insensitive to the number of 
threads. However, as sharing increases, the number of threads can 
become significant. 

5.3 Correlation maps 
At the end of the tracking phase, each node has complete access 
bitmaps for each local thread, but only incomplete information 
about remote threads. The local bitmaps are sufficient to deter- 
mine a local thread's affinity for an entire remote node. Systems 
with a high degree of multi-threading might find this useful in 
allowing nodes to unilaterally send threads elsewhere. Systems 
like D-CVM, on the other hand, generally use rather coarse- 
grained threads. Hence, thread exports usually need to be bal- 
anced by an equal number of thread imports. Good decisions 
about which thread(s) should be imported usually require global 
information. 

D-CVM enables a global re-mapping process by appending 
all access bitmaps to the next barrier arrival message. Once all 
processes have arrived, the master computes thread correlations 
by counting the number of pages accessed in common by each 
pair of threads. The set of all correlations can be depicted visually 
in a two-dimensional correlation map, which shows increasing 
thread pair correlation by darker shades of gray. 

Figure 4 shows 32-thread correlation maps for FFT. Figure 4 
(a) shows a mapping of eight threads to each of four nodes. We 
have added node boundaries in the form of black outlines, i.e. the 
box in the lower left shows that threads 1-8 are on the same node. 
The map shows a well-defined structure in which all of the dark 
areas are concentrated along the diagonal, and contained within 
the outlines that represent individual nodes. Hence, we infer that 
this mapping would eliminate most communication. Any dark 
areas outside the node outlines imply network communication 
because they represent sharing by threads located on distinct 
nodes. 

By contrast, Figure 4 (b) shows that a mapping of four 
threads to each of eight nodes captures only half of the dark areas. 
The implication is that a four-by-four mapping would have much 
less communication than an eight-by-two mapping. What is not 
clear from the map is to what extent this communication advan- 
tage would translate into a performance advantage. Hence, our 
current heuristics would have no way of identifying the four-by- 
four mapping as a good one. Nonetheless, Table 3 shows that this 
is, indeed, the case. The four-node configuration has fewer than 
half the number of remote misses, messages, and overall band- 
width requirements of the eight-node configuration. These ad- 
vantages translate into an overall running time that is 8% faster 

Table 3: FFT Configurations 

for four nodes than for eight nodes. Perhaps, more importantly, 
the four-node configuration consumes only half the resources of 
the eight-node configuration. 

Finally, Figure 4 (c) shows a correlation map resulting from 
a random mapping of threads to four nodes. Note that the majority 
of the dark areas are outside node boundaries, and communication 
behavior can be expected to be worse than for the mapping of 
Figure 4 (b). 

There are essentially two empirical approaches to estimating 
the relative importance of communication and parallelism. The 
direct approach is to actually run the application in different con- 
figurations, and to search for the fastest configuration [21]. Un- 
like the original system in which this technique was used, recon- 
figuration in D-CVM (i.e., thread migration) is relatively inex- 
pensive. Hence, this approach might be practical for long-lived, 
computationally expensive applications. 

The second approach is to measure component communica- 
tion costs and to attempt to relate them to overall running time. 
For example, assume that the system detects that page faults con- 
sume 50% of the overall running time during execution of an 
eight-by-two configuration. A good heuristic might be able to 
combine this information with the correlation map shown in 
Figure 4 and deduce that the four-by-four configuration is worth 
trying. 

5.4 Thread-mapping heuristics 
Given correlation maps and the thread capacity of each node, we 
can now attempt to map threads to nodes in a way that minimizes 
communication. This problem is related to the classic bin-packing 
and weighted-cut problems. However, our problem is essentially 
the packing of a number of differently sized bins, such that the 
weight of the items being packed depends upon which bin is be- 
ing considered. One final complication is that we also want to 
minimize the number of threads that have to be migrated. 

We tested both leader-based and leader-less versions of each 
of the heuristics discussed below. Leader-based heuristics attempt 
to minimize thread migrations by constraining the 'leader" of 
each node to remain on the same node in the new configuration. 
Leaders are those threads with the lowest total communication 
requirements. If the current configuration is good, the leaders will 
tend to prevent other threads from migrating as well. Leader- 
based algorithms work best in cases where highly correlated 
threads are already co-located on the same node. 

A mapping of a thread to a node is not considered if the ad- 
dition of the new thread would overwhelm the nodefc thread c a- 
pacity. Unfortunately, non-uniform capacities or requirements 
might cause fragmentation of available capacity, preventing all 
threads from being assigned under the above policy. We assign 
any leftover threads to those nodes that have the greatest remain- 
ing capacity, regardless of sharing behavior. 

AscEdge 
Our first heuristic, AscEdge, uses the standard approach of 
"weighted cut" heuristics in attempting to ensure that non- 
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Figure 5: Normalized 8-processor execution times 

communicating threads are not co-located. AscEdge treats threads 
and the sharing between them as nodes and edges of a weighted 
graph, respectively. We map threads to processors by sorting 
edges according to weight (correlation between the threads) in 
ascending order, breaking ties by choosing on the edge with the 
lowest-numbered node (thread). The endpoints of each edge are 
put onto distinct nodes, if possible. Each thread is put onto the 
node with which the thread has the highest aggregate correlation 
(through the threads currently on the node). Nodes are preferred 
in numerical order in the case of ties. One potential problem is 
that even the highest-cost edges, which are processed last, might 
be placed on distinct nodes, causing large amounts of communi- 
cation. 

DesEdge 
DesEdge is similar to AscEdge, except that the edges are proc- 
essed in the reverse order, and threads are placed into the same 
processor, if possible. This variation handles the edges with high 
communication costs explicitly, rather than implicitly as with 
AscEdge. 

DesNode 
DesNode, our final heuristic, works directly with threads. 
Threads are sorted by aggregate communication requirements. In 
terms of the above graph, the weight of a thread (a node of the 
graph) is the cost of communication across a cut that separates the 
thread from all other threads. Threads are sorted in descending 
order, and are mapped to nodes with which they have the highest 
aggregate correlation. 

5.5 Heuristic performance 
Our evaluation consists of two parts. First, we evaluate the accu- 
racy of our heuristics by comparing the cut costs of the configura- 
tions generated by each heuristic with that of the optimal configu- 
ration. Second, we study the value of the cut cost as a predictor of 
communication requirements and overall performance. None of 
the untuned heuristics took longer than 1.5 milliseconds for any 
of our applications. 

Table 4 shows the cut costs and communication that result 
from running each of the heuristics. The first five columns give 
cut costs. The second set of five columns gives the amount of data 
communicated per iteration, and the last five columns give the 
number of messages sent each iteration. The heuristics AscEdge, 
DesEdge, and DesNode are abbreviated ae', tie', and tin', r e- 
spectively. Leader-based variants are identified by -1' suffixes. 

Additionally, we also show the communication costs of the opti- 
mal configuration (opt), and of a random configuration (r). 

Although there is a large amount of variation across the di f- 
ferent applications and heuristics, the configurations generated by 
de-l are optimal for all but barnes, where the de-l configuration 
has a cut cost less than 1% higher than optimal. De-l minimizes 
the effects of fragmentation by handling the costliest edges first. 
Additionally, the leader-based approaches help to ensure that 
nodes are filled at the same pace. The problem with filling nodes 
at different paces is that highly-correlated threads might not both 
fit on the same node. 

Cut costs match up quite well with the amount of data and 
the number of messages sent. However, the differences in cut 
costs are exaggerated in the byte and message totals. This implies 
that the pages handled better by some of the heuristics cause 
relatively more communication than pages handled equally well 
by all of the heuristics. 

Figure 5 shows the execution times resulting from the use of 
each of the heuristics, normalized to the execution time of the 
random heuristic. Overall performance matches up well with the 
communication requirements shown in Table 4. Original speed- 
ups are 5.0, 4.5, 1.5, 7.1, and 5.0 for Barnes, FFT, Ocean, SOR, 
and water, respectively. The "default" mapping of threads to 
nodes closely approximates the optimal performance in this envi- 
ronment. However, the performance of default mappings in het- 
erogeneous or non-dedicated environments could easily be closer 
to the performance of the random heuristic. 

5.6 Synchronization behavior 
So far, we have discussed only data sharing. However, threads 
also communicate in order to synchronize. Hence, a general- 
purpose cost function would seem to require taking both into 
account when assessing the viability of a candidate configuration. 
We have found, however, that the specific mapping of threads to 
nodes tends to affect synchronization behavior less than sharing 
behavior. While rigorously characterizing application synchroni- 
zation behavior is beyond the scope of this paper, we can unsci- 
entifically divide synchronization operations into three different 
categories. First, many operations use global barrier synchroniza- 
tion. The cost of this synchronization is often significant to the 
applications overall performance. However, barrier cost is 
largely independent of any particular thread configuration, pr c- 
vided that load is balance. The reason is that all threads must 
participate, regardless of their location. 

Many pair-wise lock synchronizations can be categorized as 
either reductions or work queue operations. In the former case, 
locks are used to arbitrate access to global sums or bounds. The 
need for such access is either uniform, i.e., all threads need to 
contribute to a given sum, or entirely unpredictable, as when 
locks are used to guard access to a global minimum. Moreover, 
the particular order that threads gain access to these synchroniz a- 
tion variables is often non-deterministic. Hence, past access be- 
havior is unlikely to be a good predictor of future accesses. Fi- 
nally, work queue synchronization behaves similarly to reduction 
operations in that all threads access the work queue at least occa- 
sionally, and the relative access order is highly dynamic. 

As the above discussion shows, synchronization behavior is 
not a viable candidate for use in determining thread configura- 
tions. While there is certainly a large class of applications for 
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Table 4: Impact of thread mapping on communication statistics 

which synchronization is more important than data sharing, the 
performance of such applications is better addressed through 
latency-hiding techniques. 

6. Related Work 
Thread migration has also been studied in the Millipede [22] and 
PARSEC [18] DSMs. Both systems implement thread migration 
in the context of sequential consistency rather than a relaxed 
consistency model. This makes comparisons with our system 
difficult, as sequentially-consistent systems suffer from both false 
and true sharing. Relaxed consistency models hide false sharing 
effectively without recourse to multi-threading [7]. Thread- 
scheduling algorithms on modern systems, therefore, only address 
performance problems due to true sharing. 

Both systems implement forms of passive correlation sched- 
uling, in which remote page faults are used to gain information 
about data sharing between threads. As discussed in Section 5.1, 
this technique fails to provide information about the affinity be- 
tween local threads, and can cause thread thras hing. 

In addition to correlation scheduling, PARSEC also imple- 
ments a "suspension scheduling" algorithm that temporarily su s- 
pends threads involved in page thrashing. Suspension scheduling 
effectively deals with the same performance problems as the delta 
mechanism, which is only needed in single-writer protocols. 
Hence, suspension scheduling is unlikely to be of use with more 
modern underlying consistency mechanism. This is crucial in 
evaluating the performance results in this paper, as two of the 
three applications speed up only through suspension scheduling. 
The performance of the remaining application, water-nsquared 
from SPLASH-2 [23], improves by approximately 17%. However, 
the paper gives no absolute performance information for this ap- 
plication, and in fact does not specify how many processors are 
used. 

MOSIX [24] is a distributed operating system that automati- 
cally migrates processes for load balancing and for the avoidance 
of virtual memory thrashing. The system does not support DSM ' 
and does not take sharing or communication into account when 
determining migration targets. However, the system ensures that 
a process^ entire environment migrates transparently with the 
user. A data structure called a deputy is left on the migrating 
process^ old node in order to provide forwarding addresses for 
interaction with the old nodefc enviro nment. 

Load balancing can also be accomplished implicitly through 
compile-time data placement [25]. Such techniques have the ad- 
vantage of not incurring any runtime overhead at all. However, 
they are generally applicable for a smaller set of applications than 
runtime techniques. Furthermore, they assume dedicated, homo- 

geneous environments. By contrast, runtime techniques can adapt 
to changing environments and applic ation sharing patterns. 

Several studies [21, 26] have detailed ways in which the 
runtime system can empirically determine the number of proces- 
sors that allows the best speedup for a given application. A com- 
mon characteristic of these systems is that the runtime system 
systematically tries different numbers of processors and uses a 
hill-climbing approach to converge to a local maximum. This 
approach has two drawbacks. First, the local maximum might not 
be a global maximum. Second, the search procedure can be very 
expensive, as the cost of migrating entire Unix processes across 
nodes is non-trivial. Our approach resembles a very slow hill- 
climbing algorithm (which assumes a good initial guess from the 
user), but can migrate work at a fine granula rity. 

7. Conclusions 
This paper makes three contributions. First, we describe the de- 
sign and implementation of the active correlation-tracking 
mechanism. Active correlation tracking captures complete sharing 
behavior without network communication or thread thrashing. We 
use this information to create correlation maps, which summarize 
sharing information among all threads in the system. 

Second, we define the correlation of a pair of threads as the 
number of pages shared by the threads. The cut cost of a thread 
mapping is the sum total of the correlations of all thread pairs 
that are split across two nodes. We show that a mapping^ cut 
cost works quite well as a predictor of communication require- 
ments and overall performance. This is quite important, as the 
more intuitive notion of rate is either difficult to capture, and 
easily distorted by implementation details. The utility of the cut 
cost metric is not specific to our system. However, it is likely to 
be less valid for protocols and programming models that do not 
tolerate false sharing well. 

We also evaluate several heuristics for finding thread map- 
pings with low cut costs. The best for our applications was the 
leader-based descending-edge heuristic, which produced cut costs 
that averaged only 0.3% higher than optimal. The heuristic works 
by assigning the heaviest edges first, and by using fixed leaders to 
ensure that nodes are filled evenly. 

Of course, this study only scratches the surface of mapping 
algorithms. We studied only a single system configuration, 32 
threads distributed across eight nodes, and only a single set of 
thread capacities, all the same. This study could be extended to 
look at the ability of the heuristics to cope with differing thread 
capacities, and tradeoffs between communication costs and the 
number of thread migrations. Additionally, local decision-making 
is likely to be better suited to highly dynamic environments than 
is global decision-making. 



Finally, the holy grail would be to integrate communication 
minimization, load imbalance minimization, and parallelism 
maximization into a single heuristic. The best approach to this 
problem is likely to combine aggressive monitoring of local effi- 
ciencies with sophisticated heuristics. We are continuing to work 
on this problem. 
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